

Abstracts

Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation

J. Kawamura, R. Blundell, C.-Y.E. Tong, D.C. Papa, T.R. Hunter, S.N. Paine, F. Patt, G. Gol'tsman, S. Cherednichenko, B. Voronov and E. Gershenson. "Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation." *2000 Transactions on Microwave Theory and Techniques* 48.4 (Apr. 2000, Part II [T-MTT] (Special Issue on Terahertz Electronics)): 683-689.

In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-spl mu/m atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is $T_{\text{RX}}=970$ K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is $P_{\text{LO}}=1 \text{ \mu W}$. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.

[Return to main document.](#)